Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering
نویسندگان
چکیده
Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX) analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ray diffraction (XRD). Oxidation state information was obtained by X-ray photoelectron spectroscopy (XPS). Photodegradation of organic dyes methylene blue and rhodamine B was used for evaluation of the photocatalytic properties of the coatings under a visible light source. The photocatalytic properties of the deposited coatings were then compared to a sample of commercial titanium dioxide-based photocatalytic product. The repeatability of the dye degradation reactions and photocatalytic coating reusability are discussed. It was found that coatings with a Bi:Mo ratio of approximately 2:1 exhibited the highest photocatalytic activity of the coatings studied; its efficacy in dye photodegradation significantly outperformed a sample of commercial photocatalytic coating.
منابع مشابه
Reactive Magnetron Sputter Deposition of Bismuth Tungstate Coatings for Water Treatment Applications under Natural Sunlight
Bismuth complex oxides, in particular, bismuth tungstate, have recently attracted attention as promising photocatalytic materials for water treatment processes. In the present work, photocatalytic bismuth tungstate films were prepared by pulsed direct current (DC) reactive magnetron sputtering of Bi and W targets in an Ar/O2 atmosphere onto spherically-shaped glass beads. The uniform coverage o...
متن کاملDecorative Titanium Nitride Colored Coatings on Bell-Metal by Reactive Cylindrical Magnetron Sputtering
The transition metal nitrides like titanium nitride exhibit very interesting color variation properties depending on the different plasma deposition conditions using cylindrical magnetron sputtering method. It is found in this deposition study that nitrogen partial pressure in the reactive gas discharge environment plays a significant role on the color variation of the film coatings on bell-met...
متن کاملA Novel Technique for the Deposition of Bismuth Tungstate onto Titania Nanoparticulates for Enhancing the Visible Light Photocatalytic Activity
A novel powder handling technique was used to allow the deposition of bismuth tungstate coatings onto commercial titanium dioxide photocatalytic nanoparticles. The coatings were deposited by reactive pulsed DC magnetron sputtering in an argon/oxygen atmosphere. The use of an oscillating bowl with rotary particle propagation, positioned beneath two closed-field planar magnetrons, provided unifor...
متن کاملIndoor Light Enhanced Photocatalytic Ultra-Thin Films on Flexible Non-Heat Resistant Substrates Reducing Bacterial Infection Risks
Photocatalytic antibacterial sol-gel coated substrates have been reported to kill bacteria under light or in the dark. These coatings showed non-uniform distribution, poor adhesion to the substrate and short effective lifetime as antibacterial surfaces. These serious limitations to the performance/stability retard the potential application of antibacterial films on a wide range of surfaces in h...
متن کاملThe Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering
The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...
متن کامل